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We investigate the rings over which every countably generated module is pure-projective and 

generalize the theory of rings of pure global dimension zero. This class of rings is studied in con- 

nection with Mittag-Leffler modules. We also give a characterization of Mittag-Leffler abelian 

groups. 

Introduction 

If A4 is a left module over a ring R and {Aj} is a family of right R-modules, 

it is possible to define a canonical homomorphism (HA;) OR M-+ n (AiOR M). 

Lenzing proved that this homomorphism is epic for every family of right R-modules 

{A;} if and only if A4 is finitely generated, and that it is an isomorphism for every 

family of right R-modules {A;} if and only if M is finitely presented [ 111. Goodearl 

began an investigation of the conditions on Munder which this canonical homomor- 

phism (nAi)@RM+ n(Ai@R M) is manic and proved that it is manic for every 

family of flat right R-modules {Ai} if and only if for any finitely generated sub- 

module N of A4 the inclusion N+M factors through a finitely presented module [9]. 

Raynaud and Gruson gave a significant contribution to the study of the modules 

M for which the canonical homomorphism in question is manic for every family of 

right R-modules {Ai} [12]. They called the modules A4 with this property 

Mittag-LeffIer modules because they can be described as those modules that are 

direct limits 1% Fi of finitely presented left R-modules F; such that the inverse sys- 

tem of abelian groups Hom,(Fi, N) is a Mittag-Leffler inverse system in the sense 

of Grothendieck [ 10, Chapter Om] for every left R-module N. Raynaud and Gruson 

gave several other characterizations of Mittag-Leffler modules [12]. (We have sum- 

marized most of these characterizations in Theorem 6). In this paper we continue 

the study of Mittag-Leffler modules particularly in connection with the rings of left 
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pure global dimension zero, that is, the rings for which every left R-module is pure- 

projective. 

In the first section we consider pure-split left modules, that is, the modules in 

which every pure submodule is a direct summand, and prove that they are exactly 

the modules M such that every pure epimorphism of M onto any strictly indecom- 

posable module N splits (Proposition 1). Here strictly indecomposable means that 

N is a module for which the intersection of all non-zero pure submodules is non- 

zero. As a corollary we obtain a characterization of left perfect rings as the rings 

over which every countably generated strictly indecomposable flat left module is 

projective (Corollary 2). 

In the second section we study how the various well-known properties of modules 

over the rings of pure global dimension zero behave when we consider these proper- 

ties not on all modules but only on countably generated modules. Actually, the 

result we obtain (Proposition 4) can be applied both to the rings for which every 

countably generated left R-module is pure-projective and to the rings for which 

every left R-module is pure-projective, that is, the rings of left pure global dimen- 

sion zero (Proposition 5). 

In the last section we proceed to the study of Mittag-Leffler modules. By apply- 

ing Raynaud and Gruson’s results we succeed in characterizing the Mittag-Leffler 

abelian groups, that is, the Mittag-Leffler modules over the ring z of integers (Pro- 

position 7). It is easy to see that every pure-projective module is a Mittag-Leffler 

module, and it is shown in [12] that the converse is true for countably generated 

modules. But the converse is not true in general for uncountably generated modules; 

indeed, by a theorem of Zimmermann-Huisgen [15] we can see that if every 

Mittag-Leffler left R-module is pure-projective, then R must be left perfect and of 

left pure global dimension 5 1. However we proved (Theorem 8) that the assump- 

tion that every strictly indecomposable left R-module is a Mittag-Leffler module - 

and, a fortiori, the stronger assumption that every left R-module is a Mittag-Leffler 

module - guarantees that R is of left pure global dimension zero. This immediately 

yields another characterization of the rings of finite representation type as the rings 

for which the canonical homomorphism 

is manic for every family of right R-modules {Ai};,l and every family of left R- 
modules { Bj}, EJ (Corollary 9). 

Throughout this paper R is an associative ring with identity. If M, N are left R- 
modules, a pure epimorphism M+ N is an epimorphism of R-modules whose kernel 

is a pure submodule of N, and an epimorphism M+Nsplits if its kernel is a direct 

summand of M. 
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1. Pure-split, strictly indecomposable and pure-simple modules 

Let M be a left R-module. We shall say that A4 is pure-split if every pure sub- 

module of A4 is a direct summand of M. Every pure submodule of a pure-split 

module is pure-split, because if N is a pure submodule of h4, every pure submodule 

of N is a pure submodule of M and every direct summand of M contained in N is 

a direct summand of N. 

We call a non-zero module M strictly indecornposable if the intersection of all 

non-zero pure submodules of M is non-zero. Since every direct summand of M is 

a pure submodule, every strictly indecomposable module is indecomposable. 

Moreover, every non-zero pure submodule of a strictly indecomposable module is 

strictly indecomposable. Finally, we say that a non-zero module M is pure-simple 
if it has no pure submodules other than M and 0. It is clear that M is pure-simple 

if and only if it is pure-split and indecomposable, and every pure-simple module is 

strictly indecomposable. 

Proposition 1. A left module M is pure-split if and only if every pure epimorphism 
from M onto a strictly indecomposable module splits. Every pure-split module is a 
direct sum of pure-simple submodules. 

Proof. We claim that if M is a left module such that every pure epimorphism from 

M onto a strictly indecomposable module splits, then for every proper pure sub- 

module P of M there exists a strictly indecomposable submodule U of M such that 

U fl P= 0 and U-t P= U@ P is pure in M. If we prove the claim, M is a module with 

the property that every pure epimorphism from M onto a strictly indecomposable 

module splits, and N is a pure submodule of M, then by Zorn’s Lemma it is easy 

to show that there exists a family { U;}i of strictly indecomposable submodules of 

M, which is maximal with respect to the property that the sum N+ C Uj is direct 

and N+ C Ui= N@ @ U, is pure in M. Then N+ C Ui =M, because if N+ C Ui 
is a proper submodule of M, then by our claim there exists a strictly indecom- 

posable submodule U of M such that Un (N+ C U,)=O and U+(N+ C I/,)= 
U@N@ @ Uj is pure in M; this contradicts the maximality of the family { U;}i. 
Therefore we have that N+ 1 Ui= N@ @ Ui =M, SO that N is a direct summand 

of M. This proves that M is pure-split. In particular, for N= 0 we get C U;= @ 
U,=M and M is a direct sum of strictly indecomposable submodules U, . Since 

each U, is a direct summand, whence a pure submodule, of the pure-split module 

M, each Vi is also pure-split and indecomposable. Therefore, each Uj is pure- 

simple and M= @ U, is a direct sum of pure-simple submodules. This concludes 

the proof of the proposition, if we prove the claim. 

In order to prove the claim, let M be a left module such that every pure epimor- 

phism from M onto a strictly indecomposable module splits and let P be a proper 

pure submodule of M. Choose an element x E A4 such that x $ P. Since the union of 

a chain of pure submodules of M is a pure submodule of M, by Zorn’s Lemma there 



112 G. Azumaya, A. Facchini 

exists a submodule Me of A4 maximal with respect to the property of being a pure 

submodule of A4 containing P and such that x@M,. It follows that x belongs to 

every pure submodule of A4 properly containing MO. Since there is a one-to-one 

correspondence between the pure submodules of M containing MO and the pure 

submodules of M/M,,, the module M/M, must be strictly indecomposable. By our 

assumption the canonical projection of A4 onto M/M, splits, i.e., Me is a direct 

summand of M. Let U be a submodule of A4 such that M= U@M,; then 

UrM/M, is strictly indecomposable. Since P c M,, it follows that CT fl P= 0, so 
that U-k P= U@P. Since P is pure in M, P is pure in M, as well, so that U@P is 

pure in U@M,=M. This proves the claim. 0 

It should be noted that our proof of Proposition 1 is essentially a refinement and 

a modification of an argument due to Zimmermann [16]. 

The second part of Proposition 1 cannot be inverted, that is, not every direct sum 

of pure-simple modules is pure-split. For instance, the ring Z of integers is pure- 

simple as a module over itself, but the following corollary shows that not all the free 

Z-modules are pure-split because Z is not a perfect ring. 

Corollary 2. Let R be a ring with identity. The following conditions are equivalent: 
(1) The ring R is left perfect. 
(2) Every free left R-module is pure-split. 
(3) Every countably generated flat left R-module is pure-projective. 
(4) Every countably generated strictly indecomposable flat left R-module is pure- 

projective. 

Proof. (1) * (2). Let R be a left perfect ring and let F be a free left R-module. If 

N is a left R-module and a, : F-t N is a pure epimorphism, then the module N is flat. 

Since R is left perfect, every flat left R-module is projective [5, Theorem P], so that 

N is projective and rp splits. This proves (2). 

(2) =. (3). Let N be a countably generated flat left R-module. If v, : RCHo)+ N is 

an epimorphism, a, is a pure epimorphism because N is flat. But RCHo) is pure-split, 

so that v, splits. Therefore N is isomorphic to a direct summand of R(‘O), i.e., it is 

pure-projective. 

(3) ti (4). Obvious. 

(4) ti (1). In order to prove that R is left perfect it is sufficient to prove that R 
satisfies the descending chain condition on principal right ideals [5, Theorem P]. 

Equivalently, we must prove that if {a,}, = 1, 2, _,_ is any sequence of elements in the 

ring R, the chain of right ideals a, R > aI a,R 1 a,a2a,R 2 . ..terminates. Let F be 

the free left R-module with countable basis xi, x2, . . . . Then for any strictly in- 

decomposable left R module N and every pure epimorphism v, : F-*N, N is coun- 

tably generated because cp is onto, and N is flat because F is free and Q is a pure 

epimorphism. By our assumption (6) the module N is pure-projective, so that the 

pure epimorphism q splits. This proves that F is pure-split by Proposition 1. Now 
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let G be the submodule of F generated by {x, -a,x,+,},,=,,2,.,, . By [5, Lemma 

1.11, F/G is a flat R-module, or equivalently G is a pure submodule of F, so that 

G is a direct summand of F because F is pure-split. By [5, Lemma 1.31 the chain 

a, 2 a, a2R 2 al a2a3 R 2 . ..terminates. and therefore R is left perfect. 0 

Recall that a decomposition that complements direct summands is a direct decom- 

position M= aiel Ui of a module A4 with the following property: for each direct 

summand N of A4 there is a subset IO of I such that M=N@(@i,10 Ui) [l]. 

Proposition 3. Let A4 be a pure-split left R-module and let the endomorphism ring 
of every indecomposable (whence pure-simple) direct summand of M be a local ring. 
Then A4 has a direct decomposition that complements direct summands. 

Proof. Let h4= aicl Vi be a direct decomposition of M into indecomposable sum- 

mands Vi. Let N be a proper direct summand of M. Then M= N@ N’ for a non- 

zero submodule N’ of M. In particular N’ is also pure-split and so it is a direct sum 

N’ = @ q of indecomposable submodules “;. Thus we have the direct decom- 

position M= N@ @ 5. For each j let Ej : A4 + ~j be the projection with respect to 

this decomposition. Choose an index j,. Since the endomorphism ring of 5 is a 

local ring for every j, by [3, Theorem 21 there exists an index iOEZ such that UiO is 

mapped by E],, isomorphically onto yO. Since the kernel of Ejo is N@ @j+jO 5, this 

implies that M= N@ U, @ ojgjO q and in particular NO Ui, is a direct summand 

of M. By Zorn’s Lemma we can find a maximal subset IO of Z such that the sum 

N+ &lo Ui is direct and is pure in M. Suppose N+ Ci,,, Ui=N@@iEIo Ui were 

a proper submodule of M. This is a pure submodule of M, whence a direct sum- 

mand of M. By applying the above argument to NO ai,[, Vi instead of N, we 

know that there would be an i, E I such that il $I0 and N@ ai,,, Ui+ Ui, = N@ 
@i,IO o’,o Vi, is a direct summand, whence a pure submodule of M. But this 

clearly contradicts the maximality of I,,. Thus we have M=N@ ai,[, Ui, which 

shows that the decomposition M= oiel U, complements direct summands. 0 

2. Classes of pure-projective modules 

We shall now consider the classes g of left R-modules that satisfy the following 

two conditions: 

(a) Every countably generated left R-module is in g, 

(b) If A4 is in ‘$7, then every pure epimorphic image of A4 is in ??. 

It is clear that the class of all countably generated left R-modules as well as the 

class of all left R-modules satisfy the above conditions. 

Proposition 4. Let 122 be a class of left R-modules that satisfies conditions (a) and 
(b). Then the following conditions are equivalent: 
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(1) Every module in yo’ is pure-projective. 
(2) Every module in 67 is a direct sum of finitely presented submodules. 
(3) Every indecomposable module in YZ is finitely presented. 
(4) Every strictly indecomposable module in GZ is pure-projective. 
Moreover, if there exists a class g of left R-modules satisfying the conditions (a) 

and (b) and the equivalent conditions (l)-(4), then R is a left Artinian ring and every 
module in F? is pure-split. 

Proof. Assume that (1) holds. Let us prove that R is a left perfect ring. By Corollary 

2 it is sufficient to prove that every countably generated strictly indecomposable flat 

left R-module is pure-projective. Such a module A4 is in g by condition (a), so that 

A4 is pure-projective by condition (1). This proves that R is left perfect. 

Let us show that R is left Artinian. If I is a left ideal of R, then R/I is in Q by 

the condition (a). Therefore RN is pure-projective by (l), that is, R/I is a direct 

summand of a direct sum of finitely presented modules. Since R/Z is cyclic, R/I is 

a direct summand of a finite direct sum of finitely presented modules. It follows that 

R/I itself is finitely presented, so that I is finitely generated (Schanuel’s Lemma). 

This proves that R is left Noetherian. Since a left perfect, left Noetherian ring is left 

Artinian, R must be a left Artinian ring. 

Let us show that every module in % is pure-split. We have to prove that every pure 

epimorphism M-, N with A4 in W and N any left R-module splits. But N is in 6’ by 

(b), so that N is pure-projective by (1). Therefore M+N splits. 

We are now ready to show the equivalence of (l)-(4). 

(1) G. (2). We have proved that if (1) holds, R is left Artinian and every module 

in ‘?? is pure-split. By Proposition 1, every module in i9 is a direct sum of pure-simple 

modules. Since all direct summands of modules in ?Z are in @ and every module in 

E? is pure-projective by (l), in order to prove (2) it is sufficient to show that every 

pure-simple, pure-projective left module over a left Artinian ring is finitely 

presented. If M is a pure-simple, pure-projective left module over a left Artinian 

ring R, M is an indecomposable module isomorphic to a direct summand of a direct 

sum of finitely presented modules. Since every finitely presented module over an Ar- 

tinian ring is a finite direct sum of finitely generated indecomposable modules, M 
is an indecomposable module isomorphic to a direct summand of a direct sum of 

finitely generated indecomposable modules. Moreover the endomorphism ring of 

each finitely generated indecomposable left R-module is local. It follows that M is 

isomorphic to one of the finitely generated indecomposable direct summands [3, 

Theorem 11. Since R is left Artinian, M is finitely presented. 

(2) 3 (3) q(4). Trivial. 

(4) = (1). Suppose (4) holds. Let us show that every module M in g is pure-split. 

By Proposition 1 it is sufficient to show that any pure epimorphism v, : M+ N splits 

whenever N is a strictly indecomposable left R-module. Now N is in E? by (b), so 

that N is pure-projective by (4), and thus (a splits. This proves that every module 

in g is pure-split, so that it is a direct sum of pure-simple submodules by Proposition 
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1. Each of these direct summands is in @? by (b), and is strictly indecomposable 

because it is pure-simple. By (4), each summand is pure-projective. Therefore, every 

M in @? is a direct sum of pure-projective modules, i.e., M itself is pure- 

projective. 0 

If ?? is the class of all left R-modules, we have the following known result as a 

particular case of Proposition 4: 

Proposition 5. Let R be a ring. The following statements are equivalent: 
(1) Every left R-module is pure-projective, i.e., the ring R has left pure global 

dimension zero. 
(2) Every left R-module is pure-split. 
(3) Every pure-projective left R-module is pure-split. 
(4) Every Ieft R-module is pure-injective. 
(5) Every left R-module is a direct sum of finitely presented submodules. 
(6) Every indecomposable left R-module is finitely presented. 
(‘7) Every strictly indecomposable left R-module is pure-projective. 
In this case R is necessarily a left Artinian ring. 

Note that condition (5) is also equivalent to the following weaker condition: 

(8) Every left R-module is a direct sum of finitely generated submodules. 

Conditions (5) and (8) are equivalent because if (8) holds, every injective left R- 
module is a direct sum of finitely generated submodules, so that R is left Noetherian 

by the Faith-Walker Theorem [2, Theorem 25.81. Since over a left Noetherian ring 

finitely generated and finitely presented left modules coincide, (8) implies (5). 

We point out that the equivalent conditions in Proposition 5 are also equivalent 

to the following condition obtained via X-pure-injective modules by Zimmermann- 

Huisgen [ 141: 

(9) Every left R-module is a direct sum of indecomposable submodules. 

3. Mittag-Leffler modules 

A left R-module M satisfying the equivalent conditions stated in the next theorem 

is said to be a Mittag-Leffier module. The equivalence of these conditions, which 

we have collected in a unique theorem, was essentially proved by Raynaud and 

Gruson in [12]. 

Theorem 6 (Raynaud and Gruson [12]). Let M be a left R-module. The following 
conditions are equivalent: 
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(1) For every family {Ai} of right R-modules, the canonical homomorphism 

is a monomorphism. 
(2) For every finitely presented left R-module F and every homomorphism 

P : F+M there exist a finitely presented left R-module G, a homomorphism w : F-t 
G and a homomorphism x : G-+M such that v, =xv/ and ker(A 09) = ker(A 0 I,V) 

for every right R-module A. 
(3) For every finitely generated submodule MO of M there exist a finitely 

presented left R-module G, a homomorphism I+V : MO --+ G and a homomorphism 
x : G -+M such that XI+V is the inclusion E : MO +M and ker(A 0 E) = ker(A @ I,U) for 
every right R-module A. 

(4) Every countable subset of M is contained in a pure-projective countably 
generated pure submodule of M. 

(5) Every finite subset of M is contained in a pure-projective pure submodule of 
M. 

Remark. It is easy to see that the class of all left R-modules Mthat satisfy condition 

(1) of the theorem contains all finitely presented modules and is closed for pure sub- 

modules, pure extensions and (possibly infinite) direct sums. It follows that every 

pure-projective module is Mittag-Leffler, but the converse is not true, as Proposi- 

tion 7 will show. In that proposition we shall give a characterization of the 

Mittag-Leffler abelian groups, that is, the Mittag-Leffler modules over the ring Z 

of integers. Note that by the condition 4 of Theorem 6 every countably generated 

Mittag-Leffler module is pure-projective. 

Proof of Theorem 6. The equivalence (1) e (2) is proved in [12, Seconde partie, 

Propositions 2.1.1 and 2.1.51. 

(2) a (3). If M,, is a finitely generated submodule of M, there exist a finitely 

generated free module F and an epimorphism p. : F-+Mo. Let E : Mo+M be the in- 

clusion. If condition (2) holds, there exist a finitely presented left R-module G, a 

homomorphism w. : F+ G and a homomorphism x : G + M such that EV)~ = xv0 and 

ker(A@ay?,) = ker(A@ t,~~) for every right R-module A. In particular, ker (po= 

ker EV)~= ker v/~, so that lye factors through po, i.e., there exists a homomorphism 

v:M,+G such that II/~~=I,v~. Then E~~=xw~=x~~~~, so that &=xv/. Since 

ker(A @.svO) = ker(A @ wo) = ker(A @ I,v~~) and A @v. is onto for every right R- 
module A, it follows that ker(A @E) = ker(A 0 I+Y) for every A. This proves (3). 

(3) a (2). Let a, : F-M be a homomorphism of a finitely presented left R-module 

F into M. Set MO = q(F). If condition (3) holds, there exist a finitely presented left 

R-module G, a homomorphism I+V~ : MO --t G and a homomorphism x : G+M such 

that xv0 is the inclusion E : MO + M and ker(A 0 E) = ker(A 0 wo) for every right R- 
module A. If ~‘:F-+Mo is the epimorphism obtained from v, by restricting its 

codomain to p(F) =Mo, then cp =E(P’=x~~~‘; moreover, ker(A @ E) = ker(A @ wo) 



Rings of pure global dimension zero 117 

for every right R-module A implies that ker(A O&V)‘) = ker(A 0 t+~ep’), that is, 

ker(A 0 9) = ker(A @ v/O q’). Therefore I,V = I,V~ p’ : F-t G has the properties required 

in (2). 

(2) j (4). Proved in [12, Seconde partie, Theoreme 2.2.11. 

(4) * (5). Trivial. 

(5) =+. (1). If x is in the kernel of the mapping (n Ai) OR M+ n (4; OR M), then 

by (5) there exists a pure-projective pure submodule P of A4 such that x is in the 

image of the canonical mapping (n Ai) @R P-t (n Ai) OR M. In the commutative 

diagram 

(rIA)ORP - n CAiORp) 

(nAi)ORM- rI (4&W 

the upper arrow is a monomorphism because P satisfies condition (1) as remarked 

immediately after the statement of Theorem 6, and the vertical arrow on the right 

is a monomorphism because P is pure in A4; it follows that x= 0. 0 

Condition (3) in the statement of Theorem 6 is the natural extension of condition 

(c) in the statement of [9, Theorem 11. 

In the next proposition we characterize the Mittag-Leffler modules over the ring 

Z of integers. For any abelian group G, let t(G) denote the torsion subgroup of G, 

and let G’ denote the so-called first Ulm subgroup of G defined by G’ = n,,, nG. 

Recall that an abelian group H is K, -free if all countable subgroups of H are free 

[S, 0191. For instance, all direct products Zx of copies of Z are K,-free. 

Proposition 7. Let G be an abelian group. The following statements are equivalent: 
(1) G is a Mittag-Leffler Z-module. 
(2) G’ = 0 and G/t(G) is K, -free. 

Proof. (1) +. (2). Let G be a Mittag-Leffler Z-module and let XE G’. Then there 

exists a pure-projective pure subgroup H of G such that XE H. Since H is pure in 

G, H’ = G1 fl H. Therefore XE H’. But His pure-projective, i.e., it is a direct sum 

of cyclic groups [8, Theorem 30.21. Therefore H1 = 0. This proves that x= 0 and 

G’ =O. 

Let us show that if G is a Mittag-Leffler Z-module, then G/t(G) is Xi -free. Let 

H’ be a countable subgroup of G/t(G). Then there exists a countably generated 

subgroup H of G such that H’= H+ t(G)/t(G). Since G is Mittag-Leffler, there 

exists a pure-projective pure subgroup L of G containing H (Theorem 6). Then L 
is a direct sum of cyclic groups [S, Theorem 30.21, so that L/t(L) is free. It follows 

that H’= H+ t(G)/t(G) is a subgroup of L + t(G)/t(G)=L/L fl t(G) =L/t(L), 
which is free. This shows that H’ is free, i.e., G/t(G) is Xi-free. 
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(2) * (1). Since t(G) is pure in G, in order to show that G is a Mittag-Leffler 

module it is sufficient to show that both t(G) and G/t(G) are Mittag-Leffler 

modules. Since G1 = 0 implies t(G)’ = 0, the implication (2) j (1) will be proved if 

we show that: (a) if G is a torsion abelian group and Gi =O, then G is a 

Mittag-Leffler module, and (b) if G is an Xi -free abelian group, then G is a 

Mittag-Leffler module. 

(a) Let G be a torsion abelian group with G’ =O. Without loss of generality we 

can suppose that G is a p-group for some prime p. In order to prove that G is a 

Mittag-Leffler module it is sufficient to show that every countable subset of G is 

contained in a pure-projective countably generated pure subgroup of G. By [8, Pro- 

position 26.21 every countable subset of G is contained in a countably generated 

pure subgroup H of G. Since G ’ = 0, H is a countable p-group with no nonzero ele- 

ment of infinite height. Therefore, His a direct sum of cyclic groups by [8, Theorem 

17.31. In particular, H is pure-projective. 

(b) Let G be an Xi -free abelian group. In order to prove that G is a Mittag-Lef- 

fler module it is sufficient to show that every countable subset of G is contained in 

a pure-projective countably generated pure subgroup of G. By [S, Proposition 26.21 

every countable subset of G is contained in a countably generated pure subgroup 

H of G. Since G is K, -free and His a countable subgroup, H is free. In particular 

H is pure-projective. 0 

Remark. We have already observed that the abelian group Zx is a Mittag-Leffler 

Z-module, which is not free if X is infinite. This can be generalized as follows: “Let 

R be a right Noetherian ring. Then: (1) for every set X, the left R-module RX is a 

Mittag-Leffler module; (2) the left R-module RX is pure-projective for every set X 

if and only if R is a left perfect ring.” Proof. In [12, Seconde partie, 2.4.21 it is 

proved that every R x is a flat Mittag-Leffler left R-module if R is right 

Noetherian. In particular, because of flatness, all the RX are pure-projective if and 

only if they are all projective, that is, if and only if R is left perfect and right 

coherent [6, Theorem 3.31. But R is right Noetherian and therefore right coherent. 

In the following theorem we give some further characterizations of the class of 

rings described in Proposition 5 via Mittag-Leffler modules: 

Theorem 8. Let R be a ring. The following statements are equivalent: 
(1) Every left R-module is pure-projective, i.e., R has left pure global dimension 

zero. 
(2) Every left R-module is a Mittag-Leffler module. 
(3) Every pure epimorphic image of a Mittag-Leffler left R-module is a 

Mittag-Leffler module. 
(4) Every strictly indecomposable left R-module is a Mittag-Leffler module. 
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Proof. The implications (1) 3 (2) 3 (3) are trivial. 

(3) j (4). If M is a strictly indecomposable left R-module, A4 is a pure epimorphic 

image of a pure-projective module P. In particular, P is a Mittag-Leffler module. 

By condition (3), M itself must be a Mittag-Leffler module. 

(4) j (1). Since every countably generated Mittag-Leffler module is pure- 

projective (see our remark after the statement of Theorem 6), we can apply Proposi- 

tion 4 to the class B of all countably generated left R-modules. It follows that R 
is left Artinian and every countably generated indecomposable left R-module is 

finitely generated. Let M be a strictly indecomposable left R-module that is not 

pure-projective. Then M is not finitely presented, so that M is not finitely generated 

because R is left Artinian. Then it is easy to see that M has a countably generated 

submodule MO that is not finitely generated. Since M is a Mittag-Leffler module, 

by condition (4) of Theorem 6 there exists a countably generated pure submodule 

N of A4 such that 1M, c N. Since M is strictly indecomposable, its pure submodule 

N is also strictly indecomposable and therefore N is finitely generated as we saw 

above. Since R is left Artinian, the submodule MO of the finitely generated module 

N is also finitely generated. This contradiction shows that every strictly indecom- 

posable left R-module is pure-projective. By Proposition 5 it follows that every left 

R-module is pure-projective. 0 

Recall that a ring R is said to be of finite representation type in case it is left 

Artinian and has only finitely many indecomposable modules up to isomorphism. 

Corollary 9. Let R be a ring with identity. The following statements are equivalent: 
(1) The ring R is of finite representation type. 
(2) For every family {Ai}i,f of right R-modules and every family {Bj}jeJ of left 

R-modules, the canonical homomorphism 

is a monomorphism. 

Proof. It is well known that R is of finite representation type if and only if every 

left and every right R-module is pure-projective [7]. Condition (2) restricted to the 

case of a family {B} consisting of a single left R-module B states that every left R- 
module B is a Mittag-Leffler module. By Theorem 8, every left module B is pure- 

projective. Similarly, every right R-module A is pure-projective. Therefore, R is of 

finite representation type. 

Conversely, if R is a ring of finite representation type, every right and every left 

R-module is pure-projective, so they all are Mittag-Leffler modules. Therefore, if 

{Ai};,[ is a family of right R-modules and {Bj}jtJ is a family of left R-modules, 

the canonical homomorphisms 
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and 

are monomorphisms for each ill. It follows immediately that the homomorphism 

in the statement of the corollary is a monomorphism. 0 

We conclude by considering the case in which the class of Mittag-Leffler modules 

coincides with the class of pure-projective modules. 

Proposition 10. Let R be a ring with identity. Suppose that every Mittag-Leffler 
left R-module is pure-projective. Then R is a left perfect ring of left pure global 
dimension I 1. 

Proof. Recall that a left R-module A4 is said to be locally projective [13] (or a flat 
strictly Mittag-Leffler module [12]) if the following property holds: for any 

epimorphism f: A -+ C, any homomorphism h : M+ C and any finitely generated 

submodule M,, of A4, there exists a homomorphism g : M+A such that the restric- 

tions of fg and h to Me coincide. It is easy to see that every locally projective 

module is a flat Mittag-Leffler module. Therefore, if every Mittag-Leffler left R- 
module is pure-projective, then every locally projective left R-module is a pure- 

projective flat module, that is, a projective module. It follows from [15, Proposition 

33, p. 611 that R is left perfect. 

Let A4 be a left R-module. Then there exists a pure exact sequence of left R- 
modules O+K+P-+M-+O with P pure-projective. Since the sequence is pure and 

P is a Mittag-Leffler module, it follows that K also is a Mittag-Leffler module. By 

our assumption, K is pure-projective. This shows that the pure-projective dimension 

of A4 is I 1, so that the left pure global dimension of R is I 1. 0 

Corollary 11. Let R denote an algebra over an uncountable algebraically closed 
field k. Suppose that either 

(a) R is a hereditary finite-dimensional k-algebra, or 
(b) R is a radical-squared zero finite-dimensional k-algebra, or 
(c) R = k[T] for a connected quiver T (with or without cycles), or 
(d) R is a finite-dimensional local k-algebra, or 
(e) R is a finite-dimensional commutative k-algebra. 
Then if every Mittag-Leffler left R-module is pure-projective, R must be of finite 

representation type. 

Proof. By Proposition 10, the left pure global dimension of R is I 1. If conditions 

(a) or (b) hold, then R is of finite representation type by [4, Theorem 3.41. If condi- 
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tion (c) holds, then either r is a Dynkin diagram or r is an oriented cycle by [4, 

Corollary 3.51. If r is an oriented cycle, then R = k[T] is two-sided Noetherian. 

Then RX is a Mittag-Leffler R-module for every set X by the remark after the 

proof of Proposition 7. Therefore, RX is pure-projective, so that R is a left perfect 

ring by the same remark. Since a left Noetherian left perfect ring is left Artinian, 

R must be a left Artinian ring and this is a contradiction. Therefore, r cannot be 

an oriented cycle and must be a Dynkin diagram, so that R = k[T] is of finite 

representation type. 

If condition (d) holds, then either R is of finite representation type or left 

p.gl.dim R 2 2 [4, Proposition 5.31, so that we conclude by Proposition 10. Finally, 

if condition (e) holds, R is the direct product of a finite number of local k-algebras, 

so that we are led again to the case (d). 0 
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Note added in proof. The equivalence of conditions (1) and (2) in Theorem 8 was 

already proved by D. Simson in: “On pure global dimension of locally finitely 

presented Grothendieck categories”, Fundamenta Math. 96 (1977) 91-116. 
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